カテゴリー別アーカイブ: LaTex

ベクトル・行列のコマンド

\vec{a} = (a_1, a_2, \cdots, a_n) \vec{a} = (a_1, a_2, \cdots, a_n)
\overrightarrow{ab} \overrightarrow{ab}
A= \left(
\begin{array}{c}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{array} \right)
  A= \left(  \begin{array}{c}        a_1 \\        a_2 \\        \vdots \\        a_n      \end{array} \right)
\|x\|, \vec{a} \perp \vec{a}, \vec{a} \parallel \vec{a} \|x\|, \vec{a} \perp \vec{a}, \vec{a} \parallel \vec{a}
{}^tA, A^{T} {}^tA, A^{T}
\vec{a} \cdot \vec{b}, A \times B \vec{a} \cdot \vec{b}, A \times B
\left(
\begin{array}{cc}
1 & 22 \\
333 & 4 \\
\end{array}
\right)
  \left(  \begin{array}{cc}  1 & 22 \\  333 & 4 \\  \end{array}  \right)
\begin{array}{|cc|}
1 & 22 \\
333 & 4 \\
\end{array}
  \begin{array}{|cc|}  1 & 22 \\  333 & 4 \\  \end{array}
A = \left(
\begin{matrix}{cccc}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn}
\end{matrix}
\right)
    A = \left(      \begin{matrix}{cccc}        a_{11} & a_{12} & \ldots & a_{1n} \\        a_{21} & a_{22} & \ldots & a_{2n} \\        \vdots & \vdots & \ddots & \vdots \\        a_{m1} & a_{m2} & \ldots & a_{mn}      \end{matrix}    \right)

極限・微積分のコマンド

\lim_{x \to \inf} f(x) \lim_{x \to \inf} f(x)
\limsup_{x \to \inf} f(x) \limsup_{x \to \inf} f(x)
\liminf_{x \to \inf} f(x) \liminf_{x \to \inf} f(x)
f'(x), f”(x), f^{(3)}(x) f'(x), f''(x), f^{(3)}(x)
\frac{dy}{dx} \frac{dy}{dx}
f_{x}, f_{xy} f_{x}, f_{xy}
\frac{\partial y}{\partial x} \frac{\partial y}{\partial x}
\Delta, \nabla^2 \Delta, \nabla^2
\int_a^b f(x) dx \int_a^b f(x) dx
\iint_D f(x) dx, \iiint_D f(x) dx \iint_D f(x) dx, \iiint_D f(x) dx
\oint_L \mathbf{A} \cdot d\mathbf{r} \oint_L \mathbf{A} \cdot d\mathbf{r}

数式の基本コマンド

x^2 x^2
\frac{a}{b} \frac{a}{b}
\left( \frac{a}{b} \right) \left( \frac{a}{b} \right)
|x| |x|
\sqrt{x^2+y^2} \sqrt{x^2+y^2}
\sqrt[n]{x^2} \sqrt[n]{x^2}
\sin x \sin x
\cos x \cos x
\tan x \tan x
\mathrm{e}^{x} \mathrm{e}^{x}
\ln x \ln x
\log_2 x \log_2 x
\sum_{i=0}^n x_i \sum_{i=0}^n x_i
\prod_{i=0}^n x_i \prod_{i=0}^n x_i
(本文以外では)\displaystyle \prod_{i=0}^n x_i \displaystyle \prod_{i=0}^n x_i